

推翻

1101100000

1011011626

CISS PROJECT BASE

Topic 6: Vulnerability Assessment

Topic 6 – Lecture 1:

An overview of vulnerability **Network Security** and Cryptography Vulnerability Assessment Topic 6 - 6.2

Scope and Coverage

This topic will cover:

55 OD

Overview of network vulnerability

Password crackers

Vulnerability Assessment Topic 6 - 6.3

By the end of this topic students will be able to:

- Use port scanners to highlight open ports
- Perform password cracking using dictionary and brute-force methods

Security Vulnerability - 1

- A security vulnerability is a flaw or a weakness in a system or network that allows an attack to harm the system or network in some way, such as:
 - Allowing an unauthorised user to access the system or network
 - Causing a deterioration in the performance of the system or network
 - Damaging or altering the data held by a system or network

Security Vulnerability - 2

Vulnerability Assessment Topic 6 - 6.5

- The vulnerability may be inherent in the system
 - E.g. new software includes a vulnerability when it is deployed, even if installed and operated correctly
- The vulnerability may be as a result of the implementation of a system
 - E.g. the configuration of new software
- The vulnerability may be as a result of the operation and management of a system
 - E.g. poor security procedures

CYBER SECURITY

- Software flaws in new software, not tested sufficiently before deployment
- Hardware dust
- Organisation procedures poor password policy, lack of audits
- Personnel not training staff properly
- Physical environment no physical access controls, risks from flooding

Causes

Combinations of the above

Complex Systems

- Computer networks in large businesses are usually large and also complex
- A larger system is more likely to have security holes
- A complex system is more likely to have security holes
- Complete testing of large, complex networks is very difficult and extremely time consuming

Common Components

- Modern networks will use common components:
 - Software used by many others (sometimes opensource)
 - Hardware used by many others
 - Operating systems used by many others
- Attackers will have access to these components and be familiar with any security flaws they have
- The Internet rapidly spreads the knowledge of these flaws and increases the likelihood of them being quickly exploited

Many Services

Vulnerability Assessment Topic 6 - 6.9

• A typical modern network will provide numerous services to an organisation

• More services means:

- More protocols
- More ports
- More connections

The network is therefore more open to attack

Password Vulnerability Vulnerability Assessment Topic 6 - 6.10

- Vital to enforce the use of strong passwords
- Vital to regularly change passwords
 - And ensure this is a real change not 'abc1' changed to 'abc2'
- Most users will use a really weak password if they can as it is easier to remember
 - A 2006 UK survey gave the top 3 passwords as:
 - 123
 - Password
 - Liverpool

Operating Systems (OS) Vulnerability Assessment Topic 6 - 6.11

- Default settings can leave system open to attack
 - E.g. granting full access rights to any user this gives every program, including any malware on the network, full administration privileges
- Even where an OS has no inherent flaws the network administrator must set suitable permissions in order to protect the network

Surfing the Internet

- The Internet is awash with viruses, spyware and other malware
 - And, of course, a lot of very useful and high quality content!
- The web browsing policy of an organisation, plus its firewall etc. is vital in protecting the whole network
- Acceptable use policies and staff training form a vital part of the protection

Software Bugs

- New software may contain security flaws that can be exploited by a hacker
- This is not a malicious act but the complexity and amount of code in modern software applications make this inevitable
- Updates and regular patches are issued by software providers to fix these vulnerabilities as they are discovered
 One of the many reasons for using genuine software

User Input

- Programs that allow user input must check that input to prevent malicious code inclusion
- Common attacks on systems are:
 - SQL Injection attacks
 - Buffer Overflow attacks
 - (See Private Study Exercises for more on these)
- Human error is the biggest threat to security:
 - May be malicious or not
 - Includes designers, programmers and users

Repeating Mistakes

- Vulnerability Assessment Topic 6 6.15
- It is important to learn from past mistakes
- Modern programming code reuses old programming libraries
- Must ensure that any vulnerabilities that have been discovered are removed
- The Open Web Application Security Project (OWASP) publishes known vulnerabilities to help system designers and programmers from repeating past mistakes

Prevention

- Vulnerabilities have been found in every operating system
 - Hence the updates and patches that appear and should be installed
- The best prevention is sound security practices:
 - System maintenance
 - Firewalls and anti-virus
 - Staff training
 - Access controls
 - Audits

Testing Your Own Security Vulnerability Assessment Topic 6 - 6.17

- Software is available to test your own network for security vulnerabilities
- In some instance it will remove the vulnerability
 - The vulnerability scanner will be covered in more detail in the next lecture
- No matter how good the software is it is still important to have trained staff who follow sound security practices and report any potential threats

Break

推翻自

1 1 01 1 00 01 01

1011011120

Topic 6: Vulnerability Assessment

Topic 6 – Lecture 2: Managing Vulnerability, Port Scanners & **Network Security** and Cryptography

Vulnerability Management

• All networks will contain vulnerabilities

- Therefore managing these vulnerabilities and the risks associated with them is a key task of network management
- Managing vulnerability includes:
 - Prioritising vulnerabilities
 - Fixing vulnerabilities
 - Reducing the effects of potential breeches
 - Monitoring for new/unknown vulnerabilities

- Known vulnerabilities in software, operating systems and networks are well documented
- Tools (vulnerability scanners) are available to test for know vulnerabilities (penetration testing)
- Networks will also have unknown vulnerabilities that have not yet been discovered

 The implementation of sound security policies and the use of best practice is the best defence

Penetration Testing Vulnerability Assessment Topic 6 - 6.22

 A penetration test mimics the actions of a malicious attack on a network

- The aim is to discover the vulnerabilities that exist and that could be discovered by an attacker
- Provides information on:
 - Threats to the system
 - Strength of defensive measures in place
 - Possible effects of successful attacks
 - Areas of security requiring upgrade and investment

Vulnerability Scanner

- A vulnerability scanner can be used in a penetration test
- It is software that tests a system or network for weaknesses
- Different types are available
- Each type focuses on a particular area of potential weakness
- Can only discover known vulnerabilities

Vulnerability Scanners

Vulnerability Assessment Topic 6 - 6.24

• Types are available for scanning:

- Ports
- Networks
- Databases
- Web applications
- Individual computers
- We will take a closer look at Port Scanners

Port Scanners

- Software that probes for open ports
- Used by network administrators to test the network
- Used by attackers to look for vulnerabilities
- The TCP/IP protocol suite has services being supplied by a host through a port
- There are 65536 different port numbers available
- Most services use only a very limited number of ports

Port Status

- A port scan will generally give one of three results:
 - Open there is a service using the port and the host has replied with a message that it is listening for communications on this port
 - Filtered no reply is received meaning that there is some filtering occurring on this port, typically via a firewall
 - Closed a reply is received stating that
 communication is denied on this port

Port Scan Types

- There are several types of scan, including:
 - TCP connect scan
 - TCP SYN scan
 - TCP FIN scan
 - TCP Xmas Tree scan
 - TCP Null scan
 - TCP ACK scan
 - TCP Windows scan
 - TCP RPC scan
 - UDP scan

TCP Connect Scan

- Connects to the target port and performs the TCP three-way handshake
 - Sends a synchronise (SYN) packet to host
 - Host returns a synchronise acknowledgement (SYN/ACK)
 - Sends an acknowledgement (ACK) to host
 - SYN and ACK are indicated by a bit in the TCP header
 - This scan is easily detected by the target system

TCP Three-Way Handshake

Vulnerability Assessment Topic 6 - 6.29

TCP SYN Scan

- A full TCP connection is not made
- Also known as a half-open scanning
 - SYN packet sent to host port
 - Either SYN/ACK or RST/ACK (reset/acknowledgement) received
 - This tells the scanner whether it is open or closed
 - RST/ACK sent to port so full connection is never made
- May not be detected by host

TCP FIN scan

- A FIN packet is sent to the port
- This means no more data from sender
- The targeted host should send back a reset RST packet for all closed hosts
- Usually only works on Unix based hosts

TCP Xmas Tree and Null scans

- Xmas Tree sends FIN, URG and PSH packets to the target port
 - Finished, urgent and push buffered data to receiving application
- The target system should send RST for all closed ports *Null* turns off all flags in the packet to the target system
 This should return RST for all closed ports

- Used to map the rulesets associated with firewalls
- By sending an ACK packet the aim is to determine the type of firewall.
- A simple packet filter firewall will only allow established connections (with the ACK bit set)
- More complex stateful firewalls use more complex rules with advanced packet filtering

(We look at firewalls in more detail later in the course)

TCP Windows & RPC Scans

- TCP Windows scan may be able to detect open ports on some operating systems
- This is due to an anomaly in the way TCP window size is reported
- TCP RPC scans detect remote procedure call (RPC) ports on Unix systems
- They can also detect associated programs and version numbers

UDP Scans

- Vulnerability Assessment Topic 6 6.35
- Sends a UDP packet to the target port
- If it receives a "ICMP port unreachable" message the port is closed
- If the message is not received it may be assumed that the port is open
- UDP scans are slow
- Results are unreliable as no message may be received for other reasons

- Cracking a password can enable an attacker to gain access to:
 - A network
 - A computer
 - Individual files
- Does not necessarily require intelligent techniques
 May involve reading the note the user has kept, sometimes stuck on the monitor!

Dictionary Attack

Vulnerability Assessment Topic 6 - 6.37

- A simple and fast way to crack a password
- A text file contains a set of dictionary words (the dictionary file)
- This is loaded into the software package
- It runs against user accounts in the application the hacker is attacking
- Most passwords are simple and easy to crack

CYBEB SECURITY

Brute Force Attack

- May take a long time to work
 - Depends upon password complexity
- All possible combinations of characters are used until the correct combination is found
- Software packages do the work for you but it can still take weeks to crack a password this way
- Best defence is to use cryptographic methods allied to strong passwords

Password Cracking Software

Vulnerability Assessment Topic 6 - 6.39

1

- Many packages available, popular ones are:
 - Cain and Abel
 - John the Ripper
 - Hydra
 - ElcomSoft
 - Lastbit

- Scambrey, J., McClure, S. and Kurtz, J. (2001). Hacking Exposed: Network Security Secrets & Solutions. 2nd Edition. McGraw Hill.
- The Open Web Application Security Project (OWASP) website: <u>https://www.owasp.org/index.php/Main_Page</u>

THANK YOU AND ULESTICATION?

at a chief

Topic6 – Vulnerability Assessment