
Structure
The structure is the collection of different data types grouped under the same name using

the struct keyword. It is also known as the user-defined data type that enables the

programmer to store different data type records in the Structure. Furthermore, the

collection of data elements inside the Structure is termed as the member.

For example, suppose we want to create the records of a person containing name, age, id,

city, etc., and these records cannot be grouped in the single dimension array. Therefore,

we use the Structure to store multiple collections of data items.

Syntax to define Structure

Here structure_name is the name of the Structure that is defined using the struct

keyword. Inside the structure_name, it collects different data types (int, char, float)

elements known as the member. And the last, str, is a variable of the Structure.

Program to demonstrate the structure and access their member

In this program creates a student structure and access its member using structure variable

and dot (.) operator.

#include <stdio.h>
#include <string.h>

// create the Structure of student to store multiples items
struct student
{
 char name[30];
 int roll_no;
 char state[100];
 int age;
};
struct student s1, s2; // declare s1 and s2 variables of student structure

int main()
{
 // records of the student s1
 strcpy (s1.name, "John");
 s1.roll_no = 1101;
 strcpy (s1.state, "Los Angeles");
 s1.age = 20;

 // records of the student s2
 strcpy (s2.name, " Mark Douglas");
 s2.roll_no = 111;
 strcpy (s2.state, "California");
 s2.age = 18;

 // print the details of the student s1;
 printf (" Name of the student s1 is: %s\t ", s1.name);
 printf (" \n Roll No. of the student s1 is: %d\t ", s1.roll_no);
 printf (" \n The state of the student s1 is: %s\t ", s1.state);
 printf (" \n Age of the student s1 is: %d\t ", s1.age);

 // print the details of the student s2;
 printf ("\n Name of the student s1 is: %s\t ", s2.name);
 printf (" \n Roll No. of the student s1 is: %d\t ", s2.roll_no);
 printf (" \n The state of the student s1 is: %s\t ", s2.state);
 printf (" \n Age of the student s1 is: %d\t ", s2.age);
 return 0;
}

Explanation of the program: As we can see in the above program, we have created a

structure with name student, and the student structure contains different members such

as name (char), roll_no (int), state (char), age (int). The student structure also defines two

variables like s1 and s2, that access the structure members using dot operator inside the

main() function.

Structure Pointer

The structure pointer points to the address of a memory block where the Structure is

being stored. Like a pointer that tells the address of another variable of any data type (int,

char, float) in memory. And here, we use a structure pointer which tells the address of a

structure in memory by pointing pointer variable ptr to the structure variable.

Declare a Structure Pointer

The declaration of a structure pointer is similar to the declaration of the structure variable.

So, we can declare the structure pointer and variable inside and outside of the main()

function. To declare a pointer variable in C, we use the asterisk (*) symbol before the

variable's name.

Initialization of the Structure Pointer

We can also initialize a Structure Pointer directly during the declaration of a pointer.

Access Structure member using pointer:

There are two ways to access the member of the structure using Structure pointer:

© Using (*) asterisk or indirection operator and dot (.) operator.

© Using arrow (->) operator or membership operator.

Example Program

The following program shows the usage of pointers to structures –

Output:

