

Md. Mehedi Hassan

Lecturer, Department of CIS, DIU

Data Structure

Stack

A Stack is a linear data structure that follows the LIFO (Last-In-First-Out) or FILO (First-In-Last-Out) principle. A stack can be defined as a container or list in which insertion and deletion can be done from the one end known as the top of the stack.

Standard Stack Operations

upush(): Insert an element in a stack.

pop(): Delete an element from the stack.

isEmpty(): It determines whether the stack is empty or not.

isFull(): It determines whether the stack is full or not.

peek(): It returns the element at the given position.

PUSH Operation

The steps involved in the PUSH operation is given below:

- Before inserting an element in a stack, we check whether the stack is full.
- If we try to insert the element in a stack, and the stack is full, then the overflow condition occurs.
- When we initialize a stack, we set the value of top as -1 to check that the stack is empty.
- When the new element is pushed in a stack, first, the value of the top gets incremented, i.e., top=top+1, and the element will be placed at the new position of the top.
- The elements will be inserted until we reach the max size of the stack.

PUSH Operation

Flowchart of PUSH Operation

POP Operation

The steps involved in the POP operation is given below:

- Before deleting the element from the stack, we check whether the stack is empty.
- If we try to delete the element from the empty stack, then the underflow condition occurs.
- If the stack is not empty, we first access the element which is pointed by the top
- Once the pop operation is performed, the top is decremented by 1, i.e., top=top-1.

POP Operation: Cont...

Flowchart of POP Operation

Mathematical Example

Give the correct output for the following sequence of operations. Show all steps? (Answer: 8 5 2 5 1)

push(5)push(8) pop push(2)push(5)pop pop pop push(1)pop

Explanation

Input	STACK	Output
push (5)	5	
push (8)	5, 8	
рор	5	8
push (2)	5, 2	
push (5)	5, 2, 5	
рор	5, 2	8, 5
рор	5	8, 5, 2
рор		8, 5, 2, 5
push (1)	1	
рор		8, 5, 2, 5, 1

Application of Stack

- String reversal
 UNDO/REDO operation
 Recursion
 Backtracking
- □ Floors in a Building

Advantage and Disadvantage of Stack

□ <u>Advantages</u>

- Stack is easy to learn and implement for beginners.
- Does not allow resizing of variables.
- Stacks are used to solving problems that work on recursion.

Disadvantages

- Random access of elements is impossible in stacks.
- Chances of stack overflow
- Stacks are neither flexible nor scalable.